UNDERGRADUATE FOURTH SEMESTER (HONOURS) EXAMINATIONS, 2022

Subject: Mathematics
Course ID: 42114
Course Code: SH/MTH/404/GE-4
Course Title: Differential Equations and Vector Calculus
Time: 2 hours
Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:
a) Show that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$.
b) If $y_{1}=\sin 3 x$ and $y_{2}=\cos 3 x$ then find the Wronskian of y_{1} and y_{2}.
c) Solve $\frac{d y}{d x}=x^{2} y+y$.
d) If $\vec{A}=t \hat{\imath}-t^{2} \hat{\jmath}+t^{3} \hat{k}$ and $\vec{B}=\sin t \hat{\imath}+\cos t \hat{\jmath}+\cos t \hat{k}$, find $\frac{d}{d t}(\vec{A} \cdot \vec{B})$.
e) Show that $x=0$ is a regular singular point of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-(x+1) y=0
$$

f) If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$ then show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar.
g) If $\vec{\alpha}=2 t \hat{\imath}+t^{3} \hat{\jmath}+2 t^{5} \hat{k}$ then find the value of $\left(\frac{d \vec{\alpha}}{d t} \times \frac{d^{2} \vec{\alpha}}{d t^{2}}\right) \cdot \frac{d^{3} \vec{\alpha}}{d t^{3}}$ at $\mathrm{t}=1$.
h) Is $x=e^{5 t}, y=-3 e^{5 t}$ and $x=e^{3 t}, y=-e^{3 t}$ are two linearly independent solution of the $\operatorname{system} \frac{d x}{d t}=2 x-y, \frac{d y}{d t}=3 x+6 y ?$
2. Answer any four of the following questions:
a) Apply the method of variation of parameters to solve:

$$
\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x
$$

b) Test the coplanarity of the vectors $7 \hat{\imath}-9 \hat{\jmath}+11 \hat{k}, 3 \hat{\imath}+\hat{\jmath}-5 \hat{k}, 5 \hat{\imath}-21 \hat{\jmath}+37 \hat{k}$.
c) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x(x+2) \frac{d y}{d x}+(x+2) y=0$, given $y=x$ is a solution.
d) Find the Power series solution of the differential equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+3 y=0$ about $x=0$.
e) Solve by the method of variation of parameters: $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=\frac{e^{-x}}{x^{2}}$.
f) i) Prove that $\frac{d}{d t}[\vec{p} \vec{q} \vec{r}]=\left[\frac{d \vec{p}}{d t} \vec{q} \vec{r}\right]+\left[\vec{p} \frac{d \vec{q}}{d t} \vec{r}\right]+\left[\vec{p} \vec{q} \frac{d \vec{r}}{d t}\right]$ where $\vec{p}, \vec{q}, \vec{r}$ are functions of t .
ii) If $\vec{r} \times \ddot{\vec{r}}=\overrightarrow{0}$, then show that $\vec{r} \times \dot{\vec{r}}=\vec{a}$, where \vec{r} is a vector function of scalar variable t and \vec{a} is a constant vector.
3. Answer any one of the following questions:
a) i) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+5(3 x+2) \frac{d y}{d x}-3 y=x^{2}+x+1$
ii) The velocity of a particle moving in space is given by $\overrightarrow{\boldsymbol{V}}(t)=-3 t \hat{\boldsymbol{\imath}}+\left(\sin ^{2} t\right) \hat{\boldsymbol{\jmath}}+$ $\left(\cos ^{2} t\right) \widehat{\boldsymbol{k}}$. Find the particle's position as a function of t if the position at time $t=0$ is given by $\overrightarrow{\boldsymbol{R}}(0)=\hat{\boldsymbol{\jmath}}$.
iii) Solve: $\frac{d x}{y+z}=\frac{d y}{-(x+z)}=\frac{d z}{x-z}$
b) i) Solve: $\frac{d x}{d t}-\frac{d y}{d t}+3 x=\sin t, \frac{d x}{d t}+y=\cos t$; given that $x=1, y=0$ for $t=0$.
ii) If $\vec{A}=3 x y \hat{\imath}-5 z \hat{\jmath}+10 x \hat{k}$, then evaluate $\int \vec{A} \cdot d \vec{r}$ along the curve c given by $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$

